NOAH

Storing Audiological Measurements

DataFmtCodeStd 200 Version 1.1

HIMSA II K/S

The information in this document is subject to change according to the review policies established by HIMSA II K/S.

HIMSA II K/S MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OR SUITABILITY FOR A PARTICULAR PURPOSE. HIMSA shall not be liable for errors contained herein or for incidental consequential damages in connection with the supply of, performance of, or use of this material.

This document contains proprietary information that is protected by copyright. All rights are reserved. No parts of this document may be photocopied, reproduced or distributed to Non-HIMSA member companies without the prior permission of HIMSA II K/S.

Copyright © 2012 HIMSA II K/S

Preface

This is the second of a series of documents to be prepared by HIMSA A/S. Its purpose is to present and specify standard data formats for the storage and exchange of audiogram data within the framework of NOAH-compatible measurement and fitting software. The next document in the series will specify standards for Loudness Scaling.

The Hearing Instrument Manufacturers' Software Association A/S (HIMSA A/S) was founded at the beginning of 1993 by a group of hearing instrument manufacturers. It has been HIMSA A/S's mission to develop and market the NOAH software, and to make it a de facto standard for integrated hearing care software within the entire hearing industry.

The NOAH Fitting Framework is a software application that enables fitting and measurement software to share data on a common platform (NOAH). The fitting and measurement applications are provided by manufacturers who have signed a know-how licence agreement with HIMSA and thereby obtained the right to distribute the NOAH software, and to develop NOAH-compatible software applications, also referred to as modules.

Data format standards are a natural prerequisite for the ability to share data. Therefore, in co-operation with its licensees, HIMSA has prepared data format standards for Audiogram, REM/HIT, Loudness Scaling, Impedance, Otoacoustic Emission and Evoked Response Audiometry measurement types.

The documentation for these standards is available in so-called header files. These files are part of the 'software development kit', which HIMSA automatically distributes to its licensees.

Unfortunately, it is our experience that the header files are too easily misinterpreted. It has thus been decided that HIMSA must prepare a comprehensive standard document for each of the aforementioned measurement types. These documents will provide a detailed presentation of the data structure of the measurement formats as well as describe the application of the various types of, e.g. 'specific audiograms'.

The various data standards are subject to revision twice a year by a committee consisting of manufacturers of audiological measurement equipment (AEMs). Based on input prepared by HIMSA, it will be the responsibility of this committee to approve both new standard documents and updates of existing standards. The AEM Committee will meet on the Saturday following the end of the UHA Convention in Germany, i.e. in October, and on the Saturday following the end of the AAA Convention in the US, i.e. in April.

HIMSA also invites non-licensees to take part in the process of preparing and maintaining measurement data standards.

Figure 1 presents the principles by which NOAH administrates the measurement formats. Each block of stored data must be equipped with a header. This header uniquely identifies, e.g. the manufacturer who created the measurement, the type of measurement data contained in the data block and the measurement data format's revision number.

Figure 1: The handling of measurement data by NOAH

The basic revision number for a data format is 100. A data format with the revision number 110 is a direct extension of the basic 100 format. It is therefore possible for a revision 100 module to still read and understand a data block generated by a revision 110 module as it will simply discard the '+10' extension. A data format with the version number 200 would constitute a totally new revision thus making it impossible for revision 1xx modules to read revision 2xx data formats.

It is possible for a manufacturer to add non-standardised measurements to the public data block.

Document History

ver.	0.1	97-01-30	Document Template
ver.	0.6	97-03-07	First draft version
ver.	0.7	97-03-14	Second draft version. "Fact-boxes" added, dictionary completed.
ver.	0.8	97-03-17	Version for English language check.
ver.	0.9	97-03-17	Final Draft.
ver.	0.95	97-05-30	Corrections and comments from Approval Meeting inserted.
ver.	0.99	97-06-12	Edition for final Approval by Himsa
ver.	1.00	97-07-01	First version approved.

1 Introduction

1.1 A few words about programming with REMHIT.H

This document intends to explain the use of the NOAH ver 2.0 standard for storing Real Ear Measurements and Hearing Instrument Tests according to the REMHIT.H header file. This header file written in the programming language "C" defines the RemData (Rem stands for Real Ear Measurement) and HitData (Hit stands for Hearing Instrument Test) structures. The RemData structure for Real Ear Measurement contains the results of the following measurements:

REM	Real Ear Measurement
Target Gain	A calculated optimum frequency response curve for a
	Hearing Instrument.
REUR	Real Ear Unaided Response
REOR	Real Ear Occluded Response (Insertion Loss)
REIR	Real Ear Insertion Response
REAR	Real Ear Aided Response (In situ aided response)
IOMeas	Input / Output Measurement
HrmDistortion	Total Harmonic Distortion Measurement
Occlusion	Comparison of Un-occluded / Occluded ear response.
RECoupler	Real Ear to Coupler Difference Measurement

The HitData structure for Hearing Instrument Tests contains the following measurements:

HIT	Hearing Instrument Test
SPL90	Saturation Response
FullOnGain	Full On Gain
FreqResp	Frequency Response
Battery	Battery Measurement
HarmDistortion	Second and Third Harmonic Distortion Measurement
InterDistortion	Intermodulation Distortion Measurement
EquivInputNois	Equivalent Input Noise Measurement
e	
IOMeas	Input / Output Measurement
AttackRecover	Attack / Recover Curve measurement
InductionCoil	Induction Coil Measurement

The aim of this document is to explain the correct use of the RemData and HitData structures. This is done by reading the header file REMHIT.H "upside down" starting with the "outer" definition of RemData and HitData, continuing with the aforementioned measurements' Measuring Conditions structure (rhMeasCond) attached to each measurement. This is followed by the type definition of the measurements, their Measuring Conditions and their associated curve points, ending with the definition of all "inner" types, all defined as integers (some unsigned, some enumerated types).

This document is written as the second part of documentation for software developers of the NOAH Framework Programming Interface. The first part explains auddef.h, the standard for storing audiograms. Data can be exchanged across this interface among the NOAH modules. In this way data can be shared among different Hearing Instrumentand Audiological Equipment-manufacturers. This document describes the REM and HIT measurement formats and can be read independently of other NOAH documentation. It is intended as a starting point for interested, prospective licensees.

1.2 Contents

1 IN	TRODUCTION	5
1.1	A FEW WORDS ABOUT PROGRAMMING WITH REMHIT.H	5
1.2	CONTENTS	7
1.3	References	7
2 TH	HE NOAH STANDARD FOR REM / HIT	8
2.1	DATA STRUCTURE	8
2.1	1.1 The Integer type used in RemHit.H	9
2.1	1.2 Definition of RemHit standard	9
2.1	1.3 Reading and writing curve points	
2.1	1.4 RHMeasCond (Rem / Hit MeasCond)	
2.1	1.5 Defined values	23
2.2	READING AND WRITING REMHIT MEASUREMENTS	
2.2	2.1 Reading the RemHit Measurements	
2.2	2.2 Writing the RemHit Measurements	
2.2	2.3 Minimum settings for a Real Ear Measurement (REM)	
2.2	2.4 Minimum settings for a Hearing Instrument Test (HIT)	
APPEN	DIX A: VOCABULARY AND ABBREVIATIONS	
APPEN	DIX B: THE HEADER FILE REMHIT.H	49
INDEX		61

1.3 References

[Framework]	NOAH Framework ver. 0.85. System Architecture Specification. Pallas Informatik A/S.
[Mueller]	H. Gustav Mueller, David B. Hawkins and Jerry L. Northern: "Probe Microphone Measurements. Hearing Aid Selection and Assessment". Singular Publishing Group, Inc. San Diego, CA. 1992. ISBN 1-879105-68-3.
[HOCA-4]	Handbook of Clinical Audiology, edited by Jack Katz. Williams & Wilkins, 1994, 4. Edition.

2 The NOAH standard for REM / HIT

2.1 Data Structure

In order to describe the data structure as it is defined in REMHIT.H, an extended version of the language Abstract Syntax Notation No. 1 (ASN.1) is used ¹. This is done for the following reasons:

- 1. Explanation of the data structure in REMHIT.H starting with "the basic REM and HIT formats", RemData and HitData and the structures defining them. From these "outer", all-embracing types all constituent types are defined as we go by. (In effect, the header file 'upside down'). The definition in ASN.1 ends in the case of this header file by defining all the fundamental types as integers.
- 2. ASN.1 contains a few useful distinctions, used in this chapter to explain important places in REMHIT.H, where the order of variables matters, and where it does not. Note, that variables are called 'components' when in an outer structure:

SEQUENCE	Ordered collection of component types.
SEQUENCE OF	Ordered collection of variables of the component type.
SET	Unordered collection of component types, all distinct.
SET OF	Unordered collection of variables of the component type

¹ ASN.1 is defined by ISO and the International Telecommunication Union (ITU) (see ISO 8824) with a set of so-called Basic Encoding Rules which we shall NOT use here. Instead, a "Direct Encoding Rule" can be formulated: Data are encoded exactly as they are shown, down to the definition of the INTEGER as consisting of two byte, low-order transmitted first (placed at lower address).

2.1.1 The Integer type used in RemHit.H

minInt	-32768 #8000 hex	Lowest negative value represented in two byte using standard "2's complement" representation. According to [Framework], this value is illegal for the integer types defined in REMHIT.H.
undefInt	-32767 #8001 hex	Used to indicate that the value is undefined , a value which is assigned to the constant undefInt. Ref. [Framework]
minParmInt	-32766 #8002 hex	Lowest negative value legal in parameters defined as integer types in REMHIT.H according to [Framework].
Unknown	0 #0000 hex	<i>In Parameters:</i> The parameter is defined , however to an unknown value. <i>In Curve points:</i> Use logic here! For the types TdB10, TPct100, TMa100 and Tmm100 the value 0 is of course defined and valid , however for the THertz type, the value means undefined .
NoParam	1 #0001 hex	<i>In Parameters:</i> The parameter is defined Not Used (channel, parameter), see REMHIT.H for different explanations of the different types: ct_none, bt_none, bp_none and so on.
MaxInt	32767 #7FFF hex	Highest positive value. Ref. [Framework].

2.1.2 Definition of RemHit standard

NOTE: When adding a rule name, a single byte needs to be used for alignment. For example, if a field is defined to have 51 characters, where each character is 1 byte, then an extra byte needs to be added for alignment purposes. This is an empty byte, set aside to serve as a placeholder.

RemHit DEFINITIONS ::=

IMPORTS ALL FROM Noahdef -- noahdef.h

- -- Real Ear Measurement
- --
- -- RemData:
- -- Defines structure for storing a Real Ear Measurement
- --
- -- REUR (Unaided Response):
- -- Input is the input level, output is uncompensated probe level.
- -- Must be valid for use as an output curve as well as a gain curve, so if only output has
- -- been measured, fill the input part with the stimulus level value.
- -- REOR (Occluded Response):
- -- Input is the input level, output is uncompensated probe level.
- -- Actually like Aided Response (REAR) but the HI is off or detached during the
- -- measurement.
- --
- --

- -- REIR (Insertion Response):
- -- Input is the input level, output is the probe level with or without REUR compensation.

--

- -- Measurement = meas_InsertGain_U ->
- -- The output values are dB SPL values without any REUR compensation.
- --
- -- Measurement = meas_InsertGain_C ->
- -- The output values are dB SPL values minus the REUR's gain, i.e. with REUR
- -- compensation.
- --
- -- Gain curves may be stored here. In this case the Input part must be set to zero and the gain
- -- value must be stored in the Output part.
- -- REAR (Aided Response):
- --
- -- Input is the input level, output is uncompensated probe level.

RemData ::= SEQUENCE {

targets	SET OF 3 TTargetCurve,	
rEUR	TFreqMeas,	
rEOR	TFreqMeas,	
rEIR	SET OF 5 TFreqMeas,	
rEAR	SET OF 5 TFreqMeas,	
iOMeas	SET OF 5 TIOMeas,	
hrmDistortion	SET OF 3 TTHDDistMeas,	
occlusion	SET OF 3 TOcclMeas,	See TOcclMeas description
reCoupler	TRECMeas	See TRECMeas description

}

	HitData :	Defines the structure for storing a Hearing Instrument Test
H	itData ::= spl90 fullOnGain freqResp battery harmDistortion interDistortion equivInputNoise ioMeas attackRecover	SEQUENCE { SET OF 2 TFreqMeas, SET OF 2 TFreqMeas, SET OF 2 TFreqMeas, SET OF 2 TBatMeas, SET OF 2 TTHDDistMeas, SET OF 2 TTHDDistMeas, SET OF 2 TIMDistMeas, SET OF 2 EINMeas, SET OF 2 TIOMeas, SET OF 2 TIOMeas, SET OF 2 TErrerMeas,
}	maucuonColl	SE1 OF 2 IFrequeeas

TARMeas:	Attack / Recovery Measure Attack/Release test.	ement. A complete curve set containing a full
TARMeas ::= SEO	UENCE {	
measCond	TRHMeasCond	Generic meas, conditions,
levelStep	TdB10,	Level step size from the start level defined in MeasCond.
attackCrv	TARCurve	The curve where the stimulus level increases.
releaseCrv	TARCurve	The curve where the stimulus level decreases
}		
EINMeas:	Equivalent Input Noise Me	easurement.
Input part:	Uncompensated level in th	e test chamber.
Output part:	Coupler output level comp	ensated with the gain value.
	In a test box, the Hearing A reference microphone is is used. The noise floor microphone and saved as coupler by the HI is me subtracted from the measu the Equivalent Input Noise The level should be at lea security.	Instrument (HI) is connected to a 2CC coupler. placed close to the HI's microphone. No signal in the test box is measured by the reference input level, and the level delivered in the 2CC easured. The 2CC gain (measured earlier) is red level and the result, saved as output, is called e. This noise is the noise floor plus the HI noise. st at the input level, which is saved as an extra
EINMeas ::= SEQU measCond einCrv }	JENCE { TRHMeasCond, SET OF 169 TFreqMe einRMS	easPoint, TdB10 The calculated result
TARCurve:	A single curve for partial in The structure can contain e	nfo of an Attack/Release measurement. wither an attack or a release curve.
TARCurve ::= SEQ curve result ms	UENCE { SET OF 256 TARMea INTEGER, resolution	sPoint, Result in ms: A / R INTEGER, The time resolution i

predelay

-- Time before level change

INTEGER

	TARMeasPoint:	A measurement point for Attack/Release measurements.
		The time result (in milliseconds) is saved for the Attack and Release curve respectively. The predelay is saved as the number of milliseconds included in the curve before the level change.
Γ.Α	ARMeasPoint ::= SEQU output	ENCE { TdB10
."/	ARTime ::= INTEGER	Attack/Release time in milliseconds
	TBatMeas:	A complete curve containing a Battery Current measurement.
ſŦ	BatMeas ::= SEQUENC measCond batCrv	E { TRHMeasCond, SET OF 169 TBatMeasPoint
	TBatMeasPoint:	A measurement point for Battery Current measurements.
ΓF	SatMeasPoint= SEOUI	ENCE {
	freq current	THertz, TmA100
ſ'n	nA100 ::= INTEGER	Current value in hundredths of a milliAmpere (unsigned)
	TIOMeas:	A complete curve containing an Input / Output measurement.
ſΊ	OMeas ::= SEQUENC measCond ioCry	E { TRHMeasCond, SET OF 61 TIOMeasPoint

TIOMeasPoint:	A measurement point for Input / Output measurements.
Note:	No frequency information in single points. This is common for all the Measurement Points and the value is stated in MeasCond.

TIOMeasPoint::= SEQUENCE {

input	TdB10,
output	TdB10
}	

TTIMDistMeas:	A complete curve containing an Intermodulation Distortion measurement.
	The Intermodulation Distortion (IM) (difference-frequency) is the ratio of the power of the output signal at frequencies other than those delivered to the Hearing Instrument (HI) to the power of the signals that were applied to the HI. It includes the tones Freq2-Freq1 and 2*Freq1 - Freq2.

TTIMDistMeas ::=	SEQUENCE {
measCond	TRHMeasCond
distCrv	SET OF 161 TTIMDistMeasPoint
}	

TTIMDistMeasPoint:	A single measurement point for Total InterModulation Distortion Measurements
	Measurements.

TTIMDistMeasPoint ::= SEQUENCE {

freq1	THertz	First stim freq
freq2	THertz	Second stim freq
input1	TdB10	Level of first stim
input2	TdB10	Level of second stim
output1	TdB10	Output at Freq1
output2	TdB10	Output at Freq2
outputDif1	TdB10	Output at Freq2-Freq1
outputDif2	TdB10	Output at 2*Freq1-Freq2
tIMPct	TPct100	The calculated result
}		

TTHDDistMeas :	A complete curve containing a Harmonic Distortion measurement. The harmonic distortion is saved in this structure based on measurements of the distortion level at 2 * base frequency and 3* base frequency. It is calculated as the ratio of the total value of the harmonics and the base frequency. Ref. [HOCA].
	Harmonic Distortion measured in a 2CC coupler has long been an element of ANSI standards of hearing aid performance. When measured in a Real Ear the distortion level rises considerably, although it is not fully understood why. Ref. [Mueller].

TTHDDistMeas ::= SEQUENCE { measCond TRHMeasCond distCrv SET OF 161 TTHDDistMeasPoint

}

TTHDDistMeasPoint A single measurement point for Total Harmonic Distortion Measurements.

TTHDDistMeasPoint ::= SEQUENCE {

freq	THertz
input	TdB10
output1Harm	TdB10
output2Harm	TdB10
output3Harm	TdB10
thdPct	TPct100

-- Signal frequency

- -- Signal level
- -- The output value at Freq
- -- The output value at 2*Freq
- -- The output value at 3*Freq
- -- The calculated THD based
- -- on OutputXHarm

}

TPct100 ::= INTEGER

Г

TTargetCurve :	A full target curve including the description. Use the signalLevel field to state the signal level if the target curve relates to a specific signal level. Use the ruleName to add a text containing a name and description of the target curve.

TTargetCurve ::= SEQUENCE { manufCode TManufCode, TDevTypeCode, devTypeCode fittingRule TFittingRule, hiType THIType, ventDiam Tmm10, -- The diameter of vent canal Tmm10, -- The length of the vent canal ventLen TdB10, -- The reserve gain included resGain -- in the target curve couplerType TCouplerType, signalLevel TdB10, SET OF 24 TTargetPoint, target -- The target curve ruleName SET OF 51 CHARACTER STRING }

TTargetPoint :	A single element/point of the target curve.
0	

TTargetPoint ::= SEQ	UENCE {
targetFreq	THertz,
targetGain	TdB10
}	

Tmm10 ::= INTEGER -- Length measured in mm x 10 or tenths of a mm.

THIType : The type of hearing instrument being tested.

```
THIType ::= ENUMERATED {
   hit_ITE
                             (1),
    hit_BTE,
                             (2),
    hit_ITC,
                             (3),
    hit_MITC,
                             (4),
    hit_Body,
                             (5),
    hit_User1,
                             (6),
    hit_User2,
                             (7),
    hit_User3,
                             (8),
    hit_User4,
                             (9),
    hit_User5,
                             (10),
    hit_Undefined
                             (undefInt)
```

}

```
TFittingRule :
```

The fitting rule used for calculation of a target curve

TFittingRule ::= ENUMERATED {

0	(
fr_POGO	(1), McCandless and Lyregaard 1983.
fr_POGOII,	(2), Schwartz, Lyregaard and Lundh, 1988.
fr_NAL,	(3), Original NAL by Byrne and Tonnison, 1976
fr_NALProf,	(4), Byrne, Parkinson and Newall, 1990, 1991.
fr_Berger,	(5),Original Berger by Berger, Hagberg and Rane 1977.
fr_HalfGain,	(6), Lybargers Half-Gain rule as described by Brooks, 1973.
fr_ThirdGain,	(7), A simple rule for mild hearing losses.
fr_DSL,	(8), Desired Sensation Level. Seewald, 1992.
fr_LIBBY,	(9), Modified POGO by Libby, 1986.
fr_Byrne,	(10), Byrne and Tonnison, 1976.
fr_CoxMSU,	(11), Memphis State University, Cox, 1988.
fr_User1	(100), (Suggested for Berger BTE 1988)
fr_User2,	(101), (Suggested for Berger ITE 1988)
fr_User3,	(102),
fr_User4,	(103),
fr_User5,	(104),
fr_User6,	(105),
fr_User7,	(106),
fr_User8,	(107),
fr_User9,	(108),
fr_User10,	(109),
fr_Undefined	(undefInt)

}

TRECMeas:	Real Ear to Coupler Difference measurement.
RECDCrv	This curve is to be read as gain (output - input), where the result gives the difference between a measurement in a coupler and a measurement in the Client's ear. As both parts of this measurement are performed with the same measurement conditions, the curve can be used in a manner with the input part holding the coupler SPL output curve, and the output part holding the Real Ear SPL output curve. This will yield the correct gain value.

TRECMeas ::= SEQUENCE { measCond TRHMeasCond, recdCrv SET OF 169 TFreqMeasPoint

```
}
```

TOcclMeas:	Occlusion Effects, comparison between the response of the unoccluded ear with the response of the occluded ear.
OpenEarCrv:	The response of the unoccluded ear, no compensation in input or output.
OccEarCrv:	 The response of the occluded ear, no compensation in input or output. The steps for measurement of the occlusion effect, ref. [Mueller]: Disable the loudspeaker of system. Place the tube in the open ear canal 25-30 mm from the tragal notch. Have the patient vocalise, e.g. vowels such as /ee/ Let the patient find, e.g. 80 dB SPL by using a small sound level meter . When the level is right, conduct the open-ear measurement. Place HI or earmold and repeat the above steps with HI turned off. The difference between the two measurements constitutes the occlusion effect.

TOcclMeas ::= SEQUENCE {

measCond	TRHMeasCond,
openEarCrv	SET OF 169 TFreqMeasPoint,
occlEarCrv	SET OF 169 TFreqMeasPoint
)	-

<u> </u>
•
~
_

	TFreqMeas:	Generic two-channel frequency response type measurement. Refer to the two structures: RemData and HitData in remhit.h.			
'Ŧ	FreqMeas ::= SEQUENCE {				

TFreqMeas ::= SEQUENCE	{
measCond	TRHMeasCond,
freqCrv	SET OF 169 TFreqMeasPoint
}	-

	TFreqMeasPoint:	A curve point that contains a frequency plus input and output levels as measured at the stored frequency. The type is referenced in the structures TFreqMeas, TOcclMeas, TRECMeas and EINMeas.				
TF	TFreqMeasPoint ::= SEQUENCE {					
	freq	THertz,	The frequency at which input/output was recorded			
	input output	TdB10, TdB10	Input value Output value			

}

END

2.1.3 Reading and writing curve points

REMHIT.H defines the following curves:

Structured type	Curve	
Name of outer structured type	Curve Identifier	Type of curve points
TBatMeas	batCrv	SET OF 169 TBatMeasPoint
TIOMeas	ioCrv	SET OF 61 TIOMeasPoint
TTIMDistMeas	distCrv	SET OF 161 TTIMDiustMeasPoint
TTHDDistMeas	distCrv	SET OF 161 TTHDDistMeasPoint
TRECMeas	recdCrv	SET OF 169 TFreqMeasPoint
TOcclMeas	openEarCrv	SET OF 169 TFreqMeasPoint
	occlEarCrv	SET OF 169 TFreqMeasPoint
TFreqMeas	freqCrv	SET OF 169 TFreqMeasPoint

The reading of curve points in a RemHit measurement from NOAH ver 2.0 is per definition done in the following way:

The freq (or freq1) is read first (*see exception below*). The curve points might be ordered, but since they are defined as a set, they also might be *unordered* with respect to frequency. Read the curve points while checking that Freq (freq1) belongs to the interval [20..20 000].

Exception: The points that constitute the Input/Output measurement are measured for fixed frequency. A selection of curves is made for various frequencies and the result is a 3-dimensional relation: The output measurement varies as a function of both input level and frequency. Instead of reading freq1 first, the input level must be read first. This procedure must be repeated for each curve, i.e. for each frequency. The frequency can be found in rhMeasCond.

Curve points are read until the namedValue endCurve occurs:

-- Do not overlook this end of curve marker !!!

endCurve <curve point>::=

The curve point can be any of
the types listed in the table above
freq1 = undefInt defines the endCurve
or any other value

```
After endCurve, Curve points with freq1 = 0 or freq1 = undefInt (-32 767) are discarded. Curve
points with such unreasonable frequency should be discarded at any time during the reading.
For the input / output exception read:
After endCurve, Curve points with input = 0 or input = undefInt are discarded.
When writing curve points, you have to make a choice: You can -
a) place the curvepoints in the order you prefer (for example the order in which they were
    measured) or you can
   place them sorted with freq1 in ascending order
b)
In both cases you will end with an endCurve marker and fill the rest of the array with endCurve
markers (undefInts). This filling is not mandatory but is considerate to fellow programmers.
Note 1: In either case, valid codepoints should placed together. "Holes" in curves are not allowed.
Note 2: In order to retain compatibility with the existing RemHit modules, curves should start in
curvepoint [0] with a valid frequency.
For the input / output exception read:
When writing curve points, you can -
a) Place the curvepoints in the order you prefer (for example the order in which they were
    measured) or you can
b) Place them sorted with inputs in ascending order
In both cases you will end with an endCurve marker and fill the rest of the array with endCurve
```

markers (undefInts). Note 1 and 2 (above) applies.

2.1.4 RHMeasCond (Rem / Hit MeasCond)

REM HIT Measurement Conditions. The measurement conditions are placed as the first component in the following structured types: TOcclMeas, TRECMeas, TTHDDistMeas, TIOMeas, TBatMeas, TARMeas and EINMeas.

Set the signalFreq to undefInt in measurements where the curve points contain different frequencies.

Note the boolean value useRECoupler. It indicates whether the measurement is done using a coupler instead of a Real Ear. This method can be valuable for example if the patient is a child. Use the value TRUE, if the measurement is done using Real Ear to Coupler Difference. In this case the structure TRecMeas will contain the Real Ear to Coupler difference.

-- Information about each recorded curve: [17 x 2 x 2 = 68 bytes]

MeasuringConditions DEFINITIONS ::=

BEGIN

TRHMeasCond ::= SEQUENCE {			
manufCode	TManufCode,		
devTypeCode	TDevTypeCode,		
signalType	TSignalType,		
signalOutput	TSignalOutput,		
signalLevel	TdB10,		
signalFreq	THertz,		
battType	TBattType,		
battPill	TBattPill,		
battVoltage	TBattVoltage,		
battImp	TBattImp,		
useRECoupler	TBOOL,		
measMode	TMeasMode,		
measurement	Tmeasurement		
}			

-- type imported from Noahdef

2.1.5 Defined values

DefinedValues DEFINITIONS ::=

BEGIN

	TSignalType:	The signal type used during the measurement.			
TSi	TSignalType "= ENUMERATED {				
:	st_Tone	(1),			
:	st_Warble	(2),			
:	st_NarrNoise	(3),			
:	st_TwoTone	(4),			
:	st_WhiteNoise	(5),			
:	st_PinkNoise	(6),			
:	st_SpeechNoise	(7),			
:	st_Patient	(8),			
:	st_User1	(9),			
:	st_User2	(10),			
:	st_User3	(11),			
:	st_NU	(undefInt)			
}					
_					

	TSignalOutput:	The channel/media used to present the signal/stimulus.
τrc		
15	ignalOutput ::= ENUM	IERATED {
	so_InternalBox	(1),
	so_ExternalBox	(2),
	so_FF	(3),
	so_InternalBoxCoil	(4),
	so_ExternalBoxCoil	(5),
	so_FFCoil	(6),
	so_AC	(7),
	so_User1	(8),
	so_User2	(9),
	so User3	(10),

so_NU (10), so_NU (undefInt)

}

	TCouplerType :	The device in which the pro- where the output is read.	bbe microphone is placed; In other words; this is			
TC	TCouplerType ::= ENUMERATED {					
	ct_None ct_RealEar ct_711 ct_2cc ct_FreibKK ct_FreibKKK	(1), (2), (3), (4), (5), (6), (6), (7)	Freiburg Konischer Kuppler Freiburger Konischer Kinder Kuppler			
}	ct_User1 ct_User2 ct_User3 ct_NU	(7), (8), (9), (undefInt)				
	TBattType :	The battery type used.				
TF	BattType ::= ENUMERA bt_None bt_Mercury bt_ZincAir bt_OtherType bt_User1 bt_User2 bt_User3 bt_NU	TED { (1), (2), (3), (4), (5), (6), (7), (undefInt)				
TF TF	I BattVoltage ::= TV1000 The voltage of the battery in milliVolts I BattImp ::= TOhm1000 The impedance of the battery in milliOhms		ttery in milliVolts e battery in milliOhms			
TV1000 ::= Word ASN.1 does not contain a "WORD" built-in type.TOhm1000 ::= Word For the "Direct Encoding Rules" is formulated: The INTEGER is encoded 2-byte 2's complement as in "C" The Word is encoded 2-byte binary as in "C"		ain a "WORD" built-in type. oding Rules" is formulated: coded 2-byte 2's " I 2-byte binary as in "C"				

Г

}

TBattPill :	The type of battery pill.	
TBattPill ::= ENUN	MERATED {	
bp_None	(1),	
bp_Bat312	(2),	
bp_Bat13	(3),	
bp_Bat230	(4),	often referred to as size 10
bp_Bat675	(5),	
bp User1	(6),	suggested for size $5/5A$
bp User2	(7),	
bp User3	(8),	
bp NU	(undefInt)	
}		

TMeasMode: The mea	surement mode was used during the measurement
--------------------	---

TMeasMode ::= ENUMERATED {

mm_Sweep	(1),
mm_FFT	(2),
mm_TimeMeas	(3),
mm_Battery	(4),
mm_User1	(5),
mm_User2	(6),
mm_User3	(7),
mm_NU	(undefInt)

TMeasurement: Id sto bu	lentification of the measurement; mainly for use with data export and orage of not yet publicly defined measurements at the end of the public uffer.
-------------------------------	--

Tmeasurement ::= ENUMERATED {

meas_AudHand	(1),	Audiometry
meas_TargHand	(2),	Target Curve
meas_UnAided	(3),	Unaided Response
meas_OcclResp	(4),	Occluded Response
meas_InsertGain_C	(5),	Insertion Response
		(Compensated for REUR)
meas_AidedResp	(6),	Aided Response
meas_InputOutput	(7),	Input Output
meas_HarmDist	(8),	Harmonic Distortion
meas_OcclEff	(9),	Occlusion Effect
meas_RECD	(10),	Real Ear to Coupler Difference
meas_SPL90	(11),	XSPL-90, i.e. OSPL-90 for IEC and
		SSPL-90 for ANSI
meas_FOG	(12),	Full On Gain
meas_FreqResp	(13),	Frequency Response
meas_BattCurr	(14),	Battery Current
meas_InterDist	(15),	Intermodulation Distortion
meas_EquivNoise	(16),	Equivalent Input Noise
meas_AttackRec	(17),	Attack/Recovery
meas_IndCoil	(18),	Induction Coil
meas_User1	(19),	User specific #1
meas_User2	(20),	User specific #2
meas_User3	(21),	User specific #3
meas_InsertGain_U	(50),	Insertion Response
		(Uncompensated for REUR)
meas_NU	(undefInt)	

END – of defined values

}

2.2 Reading and writing RemHit Measurements

In the previous chapter, the RemData and HitData structures were explained. This chapter will give some hints to the actual reading and writing of a Rem- or HitData structure as defined in the NOAH standard version 2.0.

The basic principle is that a whole structure has to be saved although perhaps only one measurement has actually been performed. It can be one or it can be several different measurements, the result has to be saved in a complete structure. Unfortunately, this means that only a small fraction of the Rem- or HitData structure is filled by usable data. The NOAH database caters for this by compressing data before adding it to its database / expanding it before supplying the data to an external software module. The price paid in other words is slowed down communication, the gain is a uniform structure of data.

2.2.1 Reading the RemHit Measurements

The NOAH ver. 2.0 specification attaches a comprehensive measurement condition structure to each recorded curve called Measuring Conditions (Type definition TMeasCond).

In order to find the measurements that contain useful data when reading a Rem- or Hit Data structure, your program should read the Measuring Conditions attached to each measurement.

In this chapter a namedValue² called rhInitialCond is introduced. Most of the measurement conditions will be equal to this namedValue: rhInitialCond. Subsequent chapters describe the minimum changes in rhInitialCond that make RHMeasCond valid for each of the measurements that constitute a complete Remor Hit measurement.

Note 1: If the Rem Hit Measuring Conditions for a measurement are completely identical to rhInitialCond, this means that the associated measurement is empty.

Note 2: The definitions for Integer values written in the beginning of this chapter apply. However, the value zero can be found in empty measurements where the correct value should have been undefInt.

2.2.2 Writing the RemHit Measurements

When writing a Rem or Hit Measurement, use the following method:

1) Initialise all the measurements in the structure by setting all Rem Hit Measuring Conditions to the initial conditions rhInitialCond (see below). The codepoints should be initialised with endCurve. Refer to paragraph Reading and writing curve points.

2) Insert the appropriate values in the actual Rem Hit Measuring Conditions for the measurements that you want to save. Start with the minimum settings shown in the two subsequent chapters and modify according to the measuring conditions that were actually applied when recording the measurement.

The curvepoints are then inserted. Their insertion follows the directions mentioned in paragraph Reading and writing curve points.

Audiological Measurements - RemHit Standard

² ASN.1 defines namedValues as structures of an indicated type with a defined content.

٦

rhIinitialCond		
Data Type	Field	Value
TManufCode (noahdef.h)	ManufCode	undefInt (-32767)
TDevTypeCode (noahdef.h)	DevTypeCode	undefInt (-32767)
TSignalType	SignalType	st_NU = undefInt
TsignalOutput	SignalOutput	so_NU = undefInt
TdB10 (noahdef.h)	SignalLevel	undefInt (-32767)
THertz	SignalFreq	undefInt (-32767)
TbattType	BattType	undefInt (-32767)
TbattPill	BattPill	undefInt (-32767)
TbattVoltage	BattVoltage	undefInt (-32767)
TbattImp	BattImp	undefInt (-32767)
TBOOL	UseRECoupler	undefInt (-32767)
TmeasMode	MeasMode	undefInt (-32767)
Tmeasurement	Measurement	undefInt (-32767)

DEM HIT Initial M t C diti ТЪ dVah

2.2.3 Minimum settings for a Real Ear Measurement (REM)

Target Gain:			
Exception: This number of comp of the measurem	Exception: This measurement does not use rhMeasCond. Instead the TTargetCurve structure contains a number of components from rhMeasCond plus a few extra components necessary for a complete description of the measurement		
Component of TtargetCurve	Value	Explanation	
manufCode	choose the correct mfc_ <manufacturer code=""></manufacturer>	Mandatory Field. Use the correct #defined value as defined in noahdef.h. The value identifies the manufacturer of the measuring equipment.	
devTypeCode	An Integer value in the range [1maxInt] should be defined by the manufacturer.	Mandatory field. Defined individually by NOAH modules. Ref. [Framework].	
fittingRule	choose the correct fr_ <fitting rule=""></fitting>	Mandatory field. Enumerated values are defined in remhit.h.	
hiType	choose the correct hi_ <hi type=""></hi>	For some Fitting Rules the type of Hearing Instrument is not important. In these cases this field can be undefInt. Enumerated values are defined in remhit.h.	
couplerType	choose the correct ct_ <coupler type=""></coupler>	Mandatory field. Enumerated values are defined in remhit.h.	
signalLevel	An Integer value in the range [01200]	For some Fitting Rules the signal Level is not important. In these cases this field can be undefInt. Otherwise measured in dB x 10 or centiBel.	

REUR: Red	al Ear Unaided Response	IOMeas:	Input / Output Measurement
<i>REOR:</i> Real Ear Occluded Response		HrmDist:	Harmonic Distortion
REIR: Red	al Ear Insertion Response	Occlusion:	Occluded ear response
REAR: Red	al Ear Aided Response	RECoupler:	Real Ear to Coupler Difference
Field in			
MeasCond	Value	Explanation	
manufCode	Choose the correct	Mandatory Field	I. Use the correct #defined value as
	mfc_ <manufacturer code=""></manufacturer>	defined in noaho	lef.h. The value identifies the
		manufacturer of	the measuring equipment.
devTypeCode	An Integer value in the range	Mandatory field	. Defined individually by NOAH
	[1maxInt] should be defined	modules. Ref. [H	Framework].
	by the manufacturer.		
signalType	Choose the correct	Mandatory Field	l. Enumerated values are defined in
	st_ <signal type="">.</signal>	remhit.h.	
signalOutput	Choose the correct	Mandatory Field. Enumerated values are defined in	
	so_ <signal type=""></signal>	remhit.h.	
signalLevel	An Integer value in the range	Mandatory Field. Measured in dB x 10 or centiBel.	
	[01400].	<i>Exception:</i> I/O r	neasurement. Set this field to undefInt,
		since the input/o	output levels will be stored in the
		curve-points in t	his case.
signalFreq	An Integer value in the range	Mandatory Field	1.
	[2020 000].	<i>Exception:</i> Set t	his field to undefInt in case of
		multifrequency i	measurements. Otherwise state the
		frequency here.	
useRECoupler	TRUE / FALSE.	Mandatory Field	1. TRUE if the measurement is done
		using Real Ear to	o Coupler Difference. In this case the
		structure TRecM	leas will contain the Real Ear to
		Coupler differen	ice.
measurement	Choose the correct	Mandatory Field	l. Identifies the measurement.
	meas_ <measurement></measurement>		

2.2.4 Minimum settings for a Hearing Instrument Test (HIT)

SPL90:	Saturation Response	HarmDistortion:	Harmonic Distortion
FullOnGain	Full On Gain	InterDistortion:	Intermodulation Distortion
FreqResp:	Frequency Response	AttackRecover:	Attack / Recover Curve Measurement
Attack/ Recover:	Attack / Recover Curve	ICoil:	Induction Coil
Field in MeasCond	Value	Explanation	
manufCode	Choose the correct mfc_ <manufacturer code=""></manufacturer>	Mandatory Field. Use defined in noahdef.h. of the measuring equ	e the correct #defined value as The value identifies the manufacturer ipment.
devTypeCode	An Integer value in the range [1maxInt] should be defined by the manufacturer.	Mandatory field. Def Ref. [Framework].	ined individually by NOAH modules.
signalType	Choose the correct st_ <signal type=""></signal>	Mandatory Field. Enumerated values are defined in remhit.h.	
signalOutput	Choose the correct so_ <signal type=""></signal>	Mandatory Field. Entremhit.h.	umerated values are defined in
signalLevel	An Integer value in the range [01400]	Mandatory Field. Me <i>Exception:</i> I/O measu since the input/output curve-points in this c	easured in dB x 10 or centiBel. arement. Set this field to undefInt, t levels will be stored in the ase.
signalFreq	An Integer value in the range [2020 000]	Mandatory Field. <i>Exa</i> case of multifrequence frequency here.	<i>ception:</i> Set this field to undefInt in cy measurements, otherwise state the
useRECoupler	TRUE / FALSE	Mandatory Field. TR Real Ear to Coupler I TRecMeas will conta	UE if the measurement is done using Difference. In this case the structure in the Real Ear to Coupler difference.
measurement	Choose the correct meas_ <measurement></measurement>	Mandatory Field. Ide	ntifies the measurement.

Battery: Batte	ery Measurement	
Field in MeasCond	Value	Explanation
manufCode	Choose the correct mfc_ <manufacturer code=""></manufacturer>	Mandatory Field. Use the correct #defined value as defined in noahdef.h. The value identifies the manufacturer of the measuring equipment.
devTypeCode	An Integer value in the range [1maxInt] should be defined by the manufacturer.	Mandatory field. Defined individually by NOAH modules. Ref. [Framework].
signalType	Choose the correct st_ <signal type=""></signal>	Mandatory Field. Enumerated values are defined in remhit.h.
signalOutput	Choose the correct so_ <signal type=""></signal>	Mandatory Field. Enumerated values are defined in remhit.h.
signalLevel	An Integer value in the range [01400]	Mandatory Field. Measured in dB x 10 or centiBel. <i>Exception:</i> I/O measurement. Set this field to undefint, since the input/output levels will be stored in the curve-points in this case.
battType	Choose the correct bt_ <battery type=""></battery>	Mandatory Field. Mercury / Zinc-Air / Other Type as appropriate. Enumerated values are defined in remhit.h.
battPill	Choose the correct bp_ <battery pill=""></battery>	Mandatory Field. "312", "13", "230" or "675" as appropriate. Enumerated values are defined in remhit.h.
battVoltage	An unsigned Integer in the range [0 65535].	Mandatory Field. Measured in mV. It can be interesting, e.g. to measure the output level if the battery voltage is, e.g. 200 mV below the nominal level.
battImp	An unsigned Integer in the range [0 65535].	Mandatory Field. Measured in milliOhms. The measuring equipment simulates the battery impedance.

EquivInputNoise: Equivalent Input Noise Measurement		
All fields as for the SPL90 measurement except the two signalLevel and signalFreq fields.		
Field in MeasCond	Value	Explanation
signalLevel signalFreq	Values from the Gain measurement.	The stimulus level and frequency describes the situation when measuring the Gain. The gain is subtracted from the Output Noise Level in order to obtain the equivalent Input Noise Level.

IOMeas: Input / Output Measurement			
All fields as for the SPL90 measurement except the two signalLevel and signalFreq fields.			
Field in			
MeasCond	Value	Explanation	
signalFreq	An Integer value in the	The I/O Measurement is performed at a fixed	
	range [2020 000]	frequency.	
signalLevel	Not applicable, use	The signal levels are saved in the codepoints.	
	undefInt.		

Appendix A: Vocabulary and Abbreviations

A

ASN.1	Abstract Syntax Notation No. 1. ITU and OSI defined language for specification of protocol message content.
Aided Response	Aided Response or Real Ear Aided Response (REAR) is the Sound Pressure Level (SPL) as a function of frequency, at a specified measurement point in the ear canal for a specified soundfield with the hearing aid in place and turned on. This can be expressed either in SPL or as gain in decibels relative to the stimulus level.
AttackCrv	A component of the structure TARMeas of type TARCurve. The component contains the result of an Attack Measurement.
AttackRecover	This test examines the response time of a Hearing Instrument for a change in sound pressure level. In general, narrow-band signals are used as stimulus. Component of the outer type HitData.

B

BatCrv	A Battery Curve consisting of 169 TBatMeasPoints, each consisting of a (frequency, current) measurement.
Battery	Battery is a component of the structure Hearing Instrument Test (HitData), where two battery measurements are saved. Each battery Measurement consists for Measurement Conditions and a Battery Curve.
BattImp	Battery Impedance (BattImp) in Ohm x 1000 (milliOhms). Component of type TBattImp in the REMHIT Measurement Conditions (RHMeasCond).
BattPill	Battery Pill (BattPill):"312", "13", "230" or "675". Component of type TBattPill in the REMHIT Measurement Conditions (RHMeasCond).
BattType	Battery Type (BattType): Mercury or Zinc-Air. Component of type TBattType in the REMHIT Measurement Conditions (RHMeasCond).
BattVoltage	Battery Voltage (BattVoltage) in Volt x 1000 (milliVolt). Component of type TBattVoltage in the REMHIT Measurement Conditions (RHMeasCond).
Bp_Bat13 <i>See</i> TBattPill	The Battery Pill Type (BP) is defined as type "13".
Bp_Bat230 <i>See</i> TBattPill	The Battery Pill Type (BP) is defined as type "230".

Appendix A	Vocabulary and A
Bp_Bat312 See TBattPill	The Battery Pill Type (BP) is defined as type "312".
Bp_Bat675 <i>See</i> TBattPill	The Battery Pill Type (BP) is defined as type "675".
Bp_None See TBattPill	The Battery Pill Type (BP) is defined however, to an unknown value.
Bp_NU <i>See</i> TBattPill	The Battery Pill is undefined. This value is assigned to the constant undefInt.
Bp_User[13] See TBattPill	The Battery Pill is User Defined Battery Pill No. [13]. Not NOAH defined.
Bt_Mercury See TBattType	The Battery Type (BT) is Mercury.
Bt_None <i>See</i> TBattType	The Battery Type (BT) is defined however, to an unknown value.
Bt_NU See TBattType	The Battery Type is undefined. This value is assigned to the constant undefInt.
Bt_OtherType See TBattType	The Battery Type is different from Mercury or Zinc-air. Reserved for future NOAH definition.
Bt_User3 See TBattType	The Battery Type is defined as User Battery Type No. [13]. Not NOAH defined.
Bt_ZincAir See TBattType	The Battery Type is Zinc-Air.

С

components	Used in ASN.1 for the fields in a structured type (a "C" structure). The components are given Identifiers, i.e. a field name, in "C" referred to as the member.
CouplerType	The device in which the probe microphone is placed. In other words: this is where the output is read. >The type TCouplertype is defined Enumerated, the values are named ct_ <coupler type="">.</coupler>
Ct_2cc See TCouplerType	The Coupler Type (CT) is a 2cc coupler.
Ct_711 See TCouplerType	The Coupler Type (CT) is an IEC 711 coupler.
Ct_FreibKK See TCouplerType	The Coupler Type (CT) is a Freiburger Konischer Kuppler.

Appendix A	Vocabulary and A
Ct_FreibKKK See TCouplerType	The Coupler Type (CT) is a Freiburger Konischer <i>Kinder</i> Kuppler.
ct_None <i>See</i> TCouplerType	The Coupler Type (CT) is defined however, to an unknown value.
ct_NU <i>See</i> TCouplerType	The coupler type is undefined. This value is assigned to the constant undefInt.
ct_RealEar <i>See</i> TCouplerType	The Coupler Type (CT) is a real ear. The measurement is carried out in the client's ear.
ct_User[13] <i>See</i> TCouplerType	The Coupler Type (CT) is User Defined Coupler Type No. [13]. Not NOAH defined.
Current	Hearing Instrument Battery Current as simulated in a REMHIT test equipment, measured in mA x 100 (Hundredths of milli-Ampere). Component of the TbatMeasPoint structure of type TmA100. Defined as unsigned integer.
curve	A component of the Attack Release Curve structured type (TARCurve). The curve can be Attack or it can be Release. One curve consists of 256 points of type TARMeasPoint.

D

data structure	REMHIT.H describes the data structure for interchange of data with the NOAH ver. 2.0 database.
DevTypeCode	Defined as Integer in Noahdef.h. Identifies a particular device or instrument type to a NOAH module. Defined individually by NOAH modules. Ref. [Framework].
DistCrv	DistortionCurve. Curve of InterModulation or Harmonic Distortion curve points: SET OF TTIMDistMeasPoint or TTHDDistMeasPoint.

E

EINCrv	Equivalent Input Noise Curve points of the type SET OF 169 TFreqMeasPoint.
EINMeas	 Equivalent Input Noise Measurement: In a test box, the Hearing Instrument (HI) is connected to a 2CC coupler. A reference microphone is placed close to the HI microphone. No signal is used. The noise floor in the test box is measured by the reference microphone and saved as input level, and the level delivered in the 2CC coupler by the HI is measured. The 2CC gain (measured earlier) is subtracted from the measured level and the result, saved as output, is the

	Equivalent Input Noise.
	5. This noise is the noise floor plus the HI noise. The level should be at least at the input level, which is saved as an extra security.
EINRMS	The curve points of the einCrv output curve are squared, summed and divided with the number of defined curve points. The square root of the result is saved as EINRMS (Root Mean Square).
endCurve	The set of curve points in a Rem- or HitData structure is not necessarily filled with data. It is recommended to save an endCurve marker after the curve points with actual data. The unused curve points can be endCurve or null-filled. See Reading and writing curve points.
EquivInputNoise	Equivalent Input Noise Measurement. A measurement in the Hearing Instrument Test (HitData) structure. Defined as SET OF 2 EINMeas.

F

FittingRule	When selecting gain and frequency response for a HI the question often is: "How much gain does the HI wearer desire for everyday listening"? The idea is that the use gain tends to be some percentage of the degree of hearing loss. Samuel Lybarger proposed the first fitting rule in the 1940's. He proposed that gain should be equal to one half of the hearing loss. Ref. [Mueller]
fr_Berger (5) See TFittingRule	FittingRule = Berger. The original version of the Berger rule is Berger, Hagberg and Rane, 1977. The rule is based on gain, frequency response and Saturation Response. Requires only pure-tone thresholds. Ref. [Mueller].
fr_Byrne (10) See TFittingRule	FittingRule = Byrne and Tonnison, 1976. First version of the National Acoustic Laboratories (NAL) method, Australia. Ref. [Mueller].
fr_CoxMSU (11) See TFittingRule	Fitting Rule = Memphis State University, Cox 1988. Ref. [Mueller].
fr_DSL (8) See TFittingRule	FittingRule = Desired Sensation Level. The most recent paper on this method is Seewald, 1992. Ref. [Mueller]. The idea is that the long-term spectrum of speech is amplified in order to reach a DSL. Ref. [Mueller].
fr_HalfGain (6) <i>See</i> TFittingRule	FittingRule = Lybargers Half-gain rule as described by Brooks, 1973. Ref. [Mueller].
fr_LIBBY (9) See TFittingRule	FittingRule = Libby, 1986. A modification of the POGO procedure that varies the amount of REIG depending on the degree of hearing loss. A mild hearing loss leads to a preferred REIG equal to one third of their hearing loss. Ref. [Mueller].

Appendix A	Vocabulary and Abbreviations
fr_NAL (3) See TFittingRule	FittingRule = Byrne and Tonnison, 1976 National Acoustics Laboratories (NAL) of Australia.Ref. [Mueller].
fr_NALProf (4) See TFittingRule	FittingRule = Byrne, Parkinson and Newall, 1990, 1991. Modified NAL formula for persons with servere sensorineural hearing losses. Ref. [Mueller].
fr_POGO (1) See TFittingRule	FittingRule = McCandless and Lyregaard, 1983: Prescription of Gain and Output Procedure (POGO). POGO is a simple procedure based on the half-gain rule and REIG, but with a low-frequency reduction. Ref. [Mueller].
fr_POGOII (2) See TFittingRule	FittingRule = Schwartz, Lyregaard and Lundh, 1988. A modified POGO procedure. Ref. [Mueller].
fr_ThirdGain (7) <i>See</i> TFittingRule	FittingRule = One third of REIG. A simple rule for mild hearing losses. Ref. [Mueller].
fr_Undefined (-32767) See TFittingRule	FittingRule = undefined. The value is assigned to the constant undefInt (-32767).
fr_User[110] ([100109]) <i>See</i> TFittingRule Freq	The Fitting Rule is User Defined Fitting Rule No. [110]. Not NOAH defined.
	In the structured type TfreqMeasPoint, TTHDDistMeasPoint and TBatMeasPoint: The frequency at which the measurement was done.
Freq1	First stimulation frequency. A component of the structured type TTIMDistMeasPoint of type THertz.
Freq2	Second stimulation frequency. A component of the structured type TTIMDistMeasPoint of type THertz.
FreqCrv	A component of the TfreqMeas structure, a generic, two-channel frequency response type.
FreqResp	The Hearing Instrument Frequency Response is a frequency / Level curve representing the amplification of the HI.
FullOnGain	Full On Gain. Component of the outer structure HitData of the type SET OF 2 TFreqMeas. It represents a calculated level in a 2CC coupler for servere hearing losses.

H

HarmDistortion	Harmonic Distortion. Component of the type SET OF 3
	TTHDDistMeas in the outer structure RemData. Also SET OF
	2 TTHDDistMeas in the HitData. The component represents the
	Total Harmonic Distortion Measurement.

hit_Body	Hearing Instrument Type = "Body Worn Hearing Instrument".
Ver. 1.1	Audiological Measurements - RemHit Standard

Appendix A	
See THIType	

hit_BTE See THIType	Hearing Instrument Type = "Behind the Ear".
hit_ITC <i>See</i> THIType	Hearing Instrument Type = "In the Canal".
hit_ITE <i>See</i> THIType	Hearing Instrument Type = "In the Ear".
hit_MITC <i>See</i> THIType	Hearing Instrument Type = "Mini In The Canal".
hit_Undefined <i>See</i> THIType	The Hearing Instrument Type = undefined. The value is assigned to the constant undefInt (-32767).
hit_User[15] <i>See</i> THIType	The Hearing Instrument Test (hit) is User Defined Hearing Instrument Test No.[15]. Not NOAH defined.
HitData	Defines structure for storing a Hearing Instrument Test.
НІТуре	The type of the hearing instrument being tested.

I

InductionCoil	Induction Coil. Component of the outer structure HitData. Audio Induction Coil Loop is one of the oldest forms of assistive listening technology in use today. These systems provide large area access to Hearing Instruments equipped with telecoil. Ref. [HOCA-4].
Input	In the structured types TFreqMeasPoint, TTHDDistMeasPoint and TIOMeasPoint the Signal Input Level. Type: TdB10 (dB x 10 or CentiBel).
Input1	In the structured type TTIMDistMeasPoint, the Signal No. 1 Input Level. Type: TdB10 (dB x 10 or CentiBel).
Input2	In the structured type TTIMDistMeasPoint, the Signal No. 2 Input Level. Type: TdB10 (dB x 10 or CentiBel).
Insertion Response	See Real Ear Insertion Response (REIR).
InterDistortion	Intermodulation Distortion Measurement. A component of the outer structure Hitdata of the type SET OF 2 TTIMDistMeas.

Input or Output curve of type SET OF 61 TIOMeasPoint. A

	component of the structured type TIOMeas.
IOMeas	Input / Output measurement (ioMeas) component of the outer type RemData (Real Ear Measurement). Type SET OF 5 TIOMeas.
L	
LevelStep	Input Level step size from the start level defined in MeasCond. The input used is a sine wave. At Attack is used Level Increase,

evelStep	Input Level step size from the start level defined in MeasCond.
	The input used is a sine wave. At Attack is used Level Increase,
	at Release is used Level Decrease. The Level Step has to be
	performed at a zero crossing.
	LevelStep is a component of type TdB10 (dB x 10 or centiBel)
	in the structured type TARMeas (Attack Release Measurement).

\mathbf{M}

ManufCode	A Component in the TRHMeasCond and TTargetCurve structured types.
maxInt	Highest positive value for the Integer Type = 32767 (#7FFF hex)
meas_AidedResp <i>See</i> Tmeasurement	The Measurement is Aided Response (REAR).
meas_AttackRec See Tmeasurement	The Measurement is Attack/Recovery.
meas_AudHand See Tmeasurement	The Measurement is Audiometry.
meas_BattCurr See Tmeasurement	The Measurement is Battery Current Measurement.
meas_EquivNoise See Tmeasurement	The Measurement is Equivalent Input Noise.
meas_FOG See Tmeasurement	The Measurement is Full On Gain (FOG).
meas_FreqResp See Tmeasurement	The Measurement is Frequency Response.
meas_HarmDist See Tmeasurement	The Measurement is Harmonic Distortion.

meas_IndCoil See Tmeasurement The Measurement is Induction Coil.

meas_InputOutput	The Measurement is Input Output.
meas_InsertGain_C See Tmeasurement	Insertion Gain measurement with compensation for the REUR curve.
meas_InsertGain_U See Tmeasurement	Insertion Gain measurement without compensation for the REUR curve.
meas_InterDist See Tmeasurement	The Measurement is Intermodulation Distortion.
meas_NU See Tmeasurement	The Measurement is undefined . This value is assigned to the constant undefInt.
meas_OcclEff See Tmeasurement	The Measurement is Occlusion Effect.
meas_OcclResp See Tmeasurement	The Measurement is Occluded Response.
meas_RECD <i>See</i> Tmeasurement	The Measurement is Real Ear to Coupler Difference (RECD).
meas_SPL90 <i>See</i> Tmeasurement	The Measurement is xSPL-90 i.e. OSPL-90 for IEC and SSPL-90 for ANSI.
meas_TargHand See Tmeasurement	The Measurement is Target curve.
meas_UnAided See Tmeasurement	The Measurement is Unaided Response (REUR).
meas_User[13] <i>See</i> Tmeasurement	The Measurement (Meas) is User Defined Measurement No.[13]. Not NOAH defined.
measCond	Measuring Conditions. Component of type TRHMeasCond found in the structured types TFreqMeas, TOcclMeas, TRECMeas, TTHDDistMeas, TTIMDistMeas, TIOMeas, TBatMeas, TARMeas and EINMeas.
MeasMode	Measurement Mode (MeasMode) used during Measurement. A Component of the REM HIT Measurement Conditions (RHMeasCond) of type TMeasMode.
Measurement	Identification of the measurement, mainly for use with data export and storage of not yet publicly defined measurements at the end of the public buffer. Measurement is a Component of the REM HIT Measurement Conditions (RHMeasCond) of type TMeasurement.
Measuring Conditions	See MeasCond.
Minimum Settings	The recommended minimum of Measurement Conditions that must be saved with a measurement in order to make it valuable when retrieved at a later stage. See chapters 2.2.3 and 2.2.4.

minInt	Integers are stored using 2's complement in a two-byte store. This means that minInt = -32768 or #8000 hex. See chapter 2.1.1.
mm_Battery See TMeasMode	The Measurement Mode is Battery Current.
mm_FFT <i>See</i> TMeasMode	The Measurement Mode is Fast Fourier Transform.
mm_NU <i>See</i> TMeasMode	The Measurement Mode is undefined . This value is assigned to the constant undefInt.
mm_Sweep <i>See</i> TMeasMode	The Measurement Mode is Frequency Sweep.
mm_TimeMeas <i>See</i> TMeasMode	The Measurement Mode is Time Domain.
mm_User[13] <i>See</i> TMeasMode	The Measurement Mode (MM) is User Defined Measurement Mode No.[13]. Not NOAH defined.

0

OcclEarCrv	The Occlusion Ear curve is the response of the occluded ear, no compensation in input or output. Defined SET OF 169 TFreqMeasPoint.
Occlusion	Hearing Instruments, headphones, earmolds, etc. create occlusion effects (the effect of closing one or two ear canals). Ref. [Mueller].
OpenEarCrv	Open Ear Curve: The response of the unoccluded ear: No compensation in input or output.
Output	Output Level Attack or Release curve. Component of the structure TARMeasPoint of type TdB10 (or centiBel).
Output1	Output Level at Freq1. Component of the structure TTIMDistMeasPoint of type TdB10 (or centiBel).
Output1Harm	Output level at base frequency. Component of the structure TTHDDistMeasPoint of type TdB10 (or centiBel).
Output2	Output Level at Freq2. Component of the structure TTIMDistMeasPoint of type TdB10 (or centiBel).
Output2Harm	Output level at 2 * base frequency. Component of the structure TTHDDistMeasPoint of type TdB10 (or centiBel).
Output3Harm	Output level at 3* base frequency. Component of the structure
Ver. 1.1	Audiological Measurements - RemHit Standard

ppendix A	Vocabulary and Abbre	eviations
	TTHDDistMeasPoint of type TdB10 (or centiBel).	
OutputDif1	Output Level at Freq2 - Freq1. Component of the structure TTIMDistMeasPoint of type TdB10 (or centiBel).	
OutputDif2	Output Level at 2 * Freq1 - Freq2. Component of the structure TTIMDistMeasPoint of type TdB10 (or centiBel).	
Р		
Predelay	The predelay is saved in the Attack Release Curve as the no. of milliseconds included in the curve before the level change.	
R		
REAR	The Real Ear Aided Response (REAR) is the Sound Pressure Level, as a function of frequency, at a specified measurement point in the ear canal for a specified sound field with the hearing aid in place and turned on. This can be expressed either in SPL or as gain in decibels relative to the stimulus level. NOAH uses SPL always. Ref. [Mueller].	
RECDCrv	The Real Ear to Coupler Difference curve represents the gain (output minus input) where the result gives the difference between a measurement in a coupler and a measurement in the client's ear. Defined SET OF 169 TFreqMeasPoint.	
RECoupler	A component of the outer structure RemData. The measurement contains the Real Ear to Coupler gain.	
REIG	The Real Ear Insertion Gain is calculated as follows: REIG = REIR.output - REIR.input The REIG curve is not stored in RemData.	
REIR	The Real Ear Insertion Response is the mathematical difference between the REUR (Unaided Response) and the REAR (Aided Response): REIR = REAR - REUR. Ref. [Mueller].	
	The formula applies for measurement = meas_InsertGain_C (Insertion Response: REIR compensated for REUR)	
	The REIR curve may in DataFmtCodeStd 200 be used as both compensated and uncompensated (for REUR) identified by the value of the RHMeasCond component measurement. The REIR curve may also be used as a gain curve by setting the input part to zero and storing the gain in the output part. If uncompensated, REIR becomes equal to REAR.	
ReleaseCrv	A component of the structure TARMeas of type TARCurve. Contains the result of a release measurement.	
RemData	Real Ear Measurement Data. One of the two outer structures in	
: 1.1	Audiological Measurements - RemHit Standard	42

	remhit.h containing 9 different measurements.
REOR	The Real Ear Occluded Response (REOR) is the Sound Pressure Level, as a function of Frequency, at a specified point in the ear canal for a specified sound field, with the hearing aid in place and turned off. This can be expressed either in SPL or as gain in decibels relative to the stimulus level. NOAH uses SPL always. Ref. [Mueller].
	The measurement is similar to REAR but the HI is on in REAR.
ResGain	The reserve gain included in the target curve. A component in the TTargetCurve structure, type TdB10.
Resolution	A component of the structure TARCurve. It expresses the time resolution of the Attack / Release Measurement. (In milliseconds).
Result	The result of an Attack / Release Measurement is defined as the point in time where the output of the Hearing Instrument is stabilised at a new level. As stimulus is used a sinus wave.
REUR	The Real Ear Unaided Response (REUR) is the Sound Pressure Level, as a function of frequency, at a specified point in the unoccluded ear canal for a specified sound field. This can be expressed in SPL or as gain in decibels relative to the stimulus level. NOAH uses SPL always. Ref. [Mueller].
RuleName	Text containing the target curve's name/description. Character String of length 51.
S	
SignalFreq	Signal Frequency (SignalFreq). A component of the structured type TRHMeasCond. The SignalFreq is set to undefInt for multifrequency measurements, or where the Signal Frequency has no significance.
SignalLevel	Use this field to state the signal level if target curve relates to a specific signal level. A component of the structure TtargetCurve of Type TdB10 (dB x 10 or centiBel).
SignalOutput	The channel/media used to present the signal/stimulus.
SignalType	The signal type used during the measurement.
so_AC. <i>See</i> TSignalOutput	The Signal Output (SO) / Stimulus is presented in an Air Conduction (AC) transducer.
so_ExternalBox. See TSignalOutput	The Signal Output (SO) / Stimulus is presented in an external test box.
so_ExternalBoxCoil. See TSignalOutput	The Signal Output (SO) / Stimulus is presented in an Induction Coil placed in an external test box.

so_FF. <i>See</i> TSignalOutput	The Signal Output (SO) / Stimulus is presented in a Free Field (FF) loudspeaker.
so_FFCoil. <i>See</i> TSignalOutput	The Signal Output (SO) / Stimulus is presented in a Free Field (FF) induction coil.
so_InternalBox. See TSignalOutput	The Signal Output (SO) / Stimulus is presented in a Built-in test box.
so_InternalBoxCoil. See TSignalOutput	The Signal Output (SO) / Stimulus is presented in an Induction Coil placed in a built-in test box.
so_NU. <i>See</i> TSignalOutput	The Signal Output is undefined . This value is assigned to the constant undefInt.
so_User[13]. See TSignalOutput	The Signal Output (SO) is defined as User Signal Output No. [13]. Not NOAH defined.
SPL90	Sound Pressure Level 90 dB re 20 microPascal. (μ Pa). A component in the outer structure HitData. A 90 dB SPL tone or warble tone is delivered as input to a test box In NOAH, SPL90 stands for the IEC measurement OSPL-90 or the ANSI measurement SSPL-90.
st_NarrNoise. See TSignalType	The Signal Type (ST) is 1/3 octave bandwidth filtered noise.
st_NU. <i>See</i> TSignalType	The Signal Type (ST) is undefined . This value is assigned to the constant undefInt.
st_Patient. See TSignalType	The Signal Type (ST) is Speech Weighted Noise . The client's own voice is used.
st_PinkNoise. <i>See</i> TSignalType	The Signal Type (ST) is Pink weighted noise, i.e. noise with equal energy content for equal relative bandwidths, e.g. 1/3-octave bands. An averaged FFT-analysis of pink noise measured in 1/3-octave bands (or other relative bandwidths) shows a flat spectrum. A pink noise signal is produced by low pass filtering white noise with -3 dB/octave.
st_SpeechNoise. See TSignalType	The Signal Type (ST) is Speech Weighted Noise (Refer ANSI 3.42 or other).
st_Tone. <i>See</i> TSignalType	The Signal Type (ST) is a Pure sine wave Tone.
st_TwoTone. See TSignalType	The Signal Type (ST) consists of two simultaneous pure tones.
st_User[13]. <i>See</i> TSignalType	The Signal Type (ST) is User Signal Type No.[13]. Not NOAH defined.
st_Warble. <i>See</i> TSignalType	The Signal Type (ST) is Modulated sine wave.

Appendix A	Vocabulary and Abbreviations
st_WhiteNoise. See	The Signal Type (ST) is White Noise, i.e. noise with equal
TSignalType	energy content for equal absolute bandwidths in Hz. An
	averaged FFT-analysis in of white noise shows a flat spectrum.

Т

TARCurve	Attack / Release curve. A tone stimulus is used as input. At time = Tattack the level of the input is increased / decreased momentarily and the output from the Hearing Instrument is measured and saved in a TARCurve.
Target	The target curve. The curve consists of 24 curve points of type TTargetPoint. A component of the TTargetCurve structure.
	The target is the <i>calculated</i> optimum frequency response curve for a Hearing Instrument. Note, that the REIG curve represents a <i>measured</i> frequency response curve for a Hearing Instrument
TargetFreq	Target Frequency. A component of the TTargetPoint structure of the type THertz.
TargetGain	Target Gain. A component of the TTargetPoint structure of the type TdB10.
TARMeas	A complete curve set containing a full Attack / Release test.
TARMeasPoint	A measurement point for Attack / Release measurements. This structure only contains an output level value, the input curve is not saved.
TARTime	Attack / Release time measured in milliseconds. The TARTime is defined Integer.
TBatMeas	Battery Measurement. A Component of the outer structure HitData.
TBatMeasPoint	Battery Current Measurement Point. This structured type contains [Frequency, Current].
TBattImp	The impedance of a Hearing instrument Battery as simulated by the REM / HIT test equipment in Ohms x 1000 (milliOhms). Defined as unsigned Integer.
TBattPill	The Battery Pill type: "312", "13", "230" or "675".
TBattType	The type of the battery: Mercury or Zinc-Air.
TBattVoltage	The voltage of a Hearing Instrument Battery as simulated by the REM / HIT test equipment in Volt x 1000 (milliVolts). Defined as unsigned Integer.

Appendix A	Vocabulary and Abbreviations
TCouplerType	Enumerated type. Represents the actual placement of the probe microphone.
TdB10	A Level (often Sound Pressure Level) expressed in dB x 10 or centiBel.
TDevTypeCode	Device Type Code, defined as Integer in noahdef.h.
TFittingRule	The fitting rule is used for the calculation of a target curve. Refer FittingRule.
TFreqMeas	A Generic, two-channel frequency response type measurement, referenced in the outer remhit.h data structures RemData and HitData.
TFreqMeasPoint	This curve point contains a frequency plus input and output level as measured at the stored frequency. The type is referenced in the structures TFreqMeas, TOcclMeas, TRECMeas and EINMeas.
THDPct	The calculated Third Harmonic Distortion based on the Output 1 and 3 levels.
THIType	The type of the Hearing Instrument (HI) being tested. Defined Enumerated, the values are named hit_ <hi type="">.</hi>
TIMPct	The calculated result of the Total Intermodulation Distortion Measurement. Type TPct100 or 1/10 000.
TIOMeas	Input / Output Measurement. A Component of the outer structure HitData.
TIOMeasPoint	Input / Output Measurement Point. This structured type consists of Input and Output levels of type TdB10. The measuring frequency is found in the associated Measuring Conditions.
TmA100	Current expressed in milliAmpere x 100 or 1/100 000 A.
TManufCode	Manufacturer code and its allowed values defined as an Integer with defined values in noahdef.h. Referenced in the TRHMeasCond and TTargetCurve structures.
TMeasMode	The Measurement Mode used during measurement.
TMeasurement	Identification of the measurement, mainly for use with data export and storage of not yet publicly defined measurements at the end of the public buffer. The measurement found in the extension part of the public buffer might be a structure that is to be incorporated in the public part at a later stage.
	TMeasurement is used to provide additional information about the curve stored as Insertion Gain (REIR). This curve may be stored as a curve with or without Unaided Response (REUR). TMeasurement is able to specify this.
Tmm10	Length in tenths of a millimetre.

Appendix A	Vocabulary and Abbreviations
TOcclMeas	Occlusion effect measurement: A comparison between the response of the unoccluded ear with the response of the occluded ear.
TOhm1000	Impedance in Ohm x 1000 (milliOhms). Defined as unsigned Integer.
TPct100	Percentage x 100. (or 1/10 000).
TRECMeas	The Real Ear to Coupler Difference measurement yields the gain (output minus input), where the result gives the difference between a measurement in a coupler and a measurement in the Client's ear. As both parts of this measurement are performed with the same measurement conditions, the curve can be used in a manner with the input part holding the coupler SPL output curve, and the output part holding the Real ear SPL output curve. This will yield the correct gain value.
TRHMeasCond	REM HIT Measurement Conditions. The measurement conditions are placed as the first component in the following structured types: TOcclMeas, TRECMeas, TTHDDistMeas, TIOMeas, TBatMeas, TARMeas and EINMeas.
TTargetCurve	Target Curve: A full target curve including the description. For saving the target gain calculated for a Hearing Instrument.
TTargetPoint	Target Point: A single element/point of the target curve. Contains frequency and calculated level of the target gain of a Hearing Instrument.
TTHDDistMeas	Second and Third Harmonic Distortion Measurement (THDDistMeas). The type is a component of the outer type RemData defined in remhit.h.
TTHDDistMeasPoint	Second and Third Harmonic Distortion Measurement Point (THDDistMeasPoint). A single measurement point for Harmonic Distortion Measurements. Referenced in the structure TTHDDistMeas.
TTIMDistMeas	InterModulation Distortion Measurement. A component of the outer structure HitData
TTIMDistMeasPoint	A single measurement point for InterModulation Distortion Measurement. Referenced in the structure TTIMDistMeas. Contains two frequencies at which the curve point is recorded, two input levels and 4 output levels: Freq1, Freq2, Freq2-Freq1 and 2*Freq1 – Freq2.
TV1000	Voltage x 1000 (milliVolts). Defined as unsigned Integer.

U

undefInt	The Integer value -32767. (#8001 hex). Used to indicate that a value is undefined. It is a value that is assigned to the constant
	undefInt Ref. [Framework].
unknown.	The Integer value 0. (#0000 hex). When used as a parameter
Ver. 1.1	Audiological Measurements - RemHit Standard

UseRECoupler	value it means that the parameter is defined however, to an unknown value. TRUE if measurement done using Real Ear to Coupler Difference
V	
VentDiam	The diameter of the vent canal. A component of the TTargetCurve structuredtype of type Tmm10. (measured in mm x 10, tenths of a millimetre)
VentLen	The length of the vent canal. Remarks as for VentDiam.

Appendix B: The header file REMHIT.H

// // // // REMHIT.H // // // Based on REMHIT.PAS for NOAH version 2.0. // // Updated file for public format 200. // // Original data structure unchanged, interpretation and handling descriptions added. // // // // NOTE! UndefInt can be used in any data field to indicate that a value is not // applicable. // // // // // Peter Kossek, REXTON DANPLEX A/S, DENMARK // August 1, 1996. // // // //

#include "noahdef.h"

```
#ifndef __REMHIT_H
#define __REMHIT_H
```

```
//
// TSignalType : The signal type used during the measurement.
//
enum TSignalType {
   st_Tone=1,
      st_Warble,
      st_NarrNoise,
      st_TwoTone,
      st_WhiteNoise,
      st_PinkNoise,
      st_SpeechNoise,
      st_Patient,
      st_User1,
      st_User2,
      st_User3,
   st_NU=UndefInt
};
//
  TSignalOutput:
                        The channel/media used to present the signal/stimulus.
//
//
enum TSignalOutput {
   so_InternalBox=1,
      so_ExternalBox,
      so FF,
      so_InternalBoxCoil,
      so_ExternalBoxCoil,
      so_FFCoil,
      so_AC,
      so_User1,
```

```
Appendix B
      so_User2,
     so_User3,
   so_NU=UndefInt
};
//
// TCouplerType :
                        The device in which the probe microphone is placed,
                        in other words: this is where the output is read.
//
//
enum TCouplerType {
   ct_None=1,
     ct_RealEar,
     ct_711,
     ct_2cc,
     ct_FreibKK,
                        // Freiburger Konischer Kuppler
     ct_FreibKKK,
                        // Freiburger Konischer Kinder Kuppler
     ct_User1,
     ct_User2,
     ct User3,
   ct_NU=UndefInt
};
//
// TBattType : The battery type used.
//
enum TBattType {
   bt_None=1,
     bt_Mercury,
     bt_ZincAir,
     bt_OtherType,
     bt_User1,
     bt_User2,
     bt_User3,
   bt_NU=UndefInt
};
typedef
            WORD
                         TV1000,
                                                 TOhm1000;
typedef
            TV1000
                         TBattVoltage;
                                                // The voltage of the battery in milliVolts
            TOhm1000 TBattImp;
                                                // The impedance of the battery in milliOhms
typedef
//
// TBattPill : The type of battery pill
//
enum TBattPill {
   bp_None=1,
     bp_Bat312,
     bp_Bat13,
     bp_Bat230,
     bp_Bat675,
     bp_User1,
     bp_User2,
     bp_User3,
   bp_NU=UndefInt
```

```
};
```

```
//
// TMeasMode:
                       Which measurement mode was used during the measurement
//
enum TMeasMode {
   mm_Sweep=1,
      mm FFT,
      mm_TimeMeas,
      mm Battery,
      mm User1,
      mm_User2,
      mm_User3,
   mm_NU=UndefInt
};
//
  TMeasurement:
                       Identification of the measurement, mainly for use with data export
//
//
                                   and storage of not yet publicly defined measurements at the end of the
                                   public buffer.
//
//
enum Tmeasurement {
   meas AudHand=1,
                       // Audiometry
      meas_TargHand, // Target Curve
      meas UnAided,
                       // Unaided Response
      meas_OcclResp,
                       // Occluded Response
      meas_InsertGain_C,
                                   // Insertion Response (compensated for REUR)
      meas_AidedResp, // Aided Response
      meas_InputOutput,// Input Output
      meas HarmDist, // Harmonic Distortion
      meas OcclEff,
                       // Occlusion Effect
      meas_RECD,
                       // Real Ear to Coupler Difference
      meas_SPL90,
                       // XSPL-90, i.e. OSPL-90 for IEC and SSPL-90 for ANSI
      meas_FOG,
                       // Full On Gain
      meas_FreqResp,
                       // Frequency Response
      meas_BattCurr,
                       // Battery Current
      meas InterDist,
                       // Intermodulation Distortion
      meas_EquivNoise, // Equivalent Input Noise
      meas_AttackRec, // Attack/Recovery
      meas_IndCoil,
                       // Induction Coil
      meas User1,
                       // User specific #1
      meas_User2,
                       // User specific #2
      meas_User3,
                       // User specific #3
      meas InsertGain U =
                                   50,
                                               // Insertion Response (uncompensated for REUR)
      meas_NU=UndefInt
```

};

typedef struct {			
TManufCode	ManufCode;		
TDevTypeCode	DevTypeCoc	le;	
TSignalType	SignalType;		
TSignalOutput	SignalOutput;		
TdB10	SignalLevel;		
//	0		
// Set this to UndefIn	t for multifreq	uency measurements,	
// otherwise state th	e frequency he	ere	
THertz	SignalFreq		
TRattType	BattType		
TBattPill	BattPill		
TBatt Voltage	BattVoltage		
TBattImn	BattImp:		
//	Dattimp,		
// TRUE, if measurer	nent done usin	g Real Ear to Coupler	
// Difference			
//			
BOOL	UseRECoupl	ler;	
TMeasMode	MeasMode;		
Tmeasurement	Measuremen	t;	
} TRHMeasCond;			
true a daff atmaat (
	F actor		
I Hertz	Freq;	// The frequency at which input/Output was recorded	
TdB10	Input;	// Input value	
IdB10	Output;	// Output value	
} TFreqMeasPoint;			
//			
// TFreqMeas:	generic, two-	channel frequency response type measurement	
//	-		
1			
TDUMaccond	MaacCondi		
TEragMageDoint	ErogCry[160	1.	
TriequieasPoint	FieqCiv[109],	
} I rieqivieas;			
//			
// TOcclMeas:	Occlusion Ef	ffects, comparison between the response of the unoccluded	
//	ear with the r	reponse of the occluded ear.	
//	OpenEarCrv	is the response of the unoccluded ear, no compensation in	
//	input or outp	ut.	
//	OccEarCrv	is the response of the occluded ear, no compensation in input	
//	or output.		
//			
typedef struct {			
TRHMeasCond	MeasCond:		
TFreqMeasPoint	OpenEarCrv	[169]:	
TFreqMeasPoint	OcclEarCrv	169];	
*	L		

} TOcclMeas;

<pre>// // TRECMeas : // // RECDCrv is to be re // a measuremen // this measurem // used in a man // output part ho // value. //</pre>	Real Ear to Coupler Difference measurement ad as gain (output - input), where the result gives the difference between at in a coupler and a measurement in the client's ear. As both parts of ment are performed with the same measurement conditions, the curve can be mer with the input part holding the coupler SPL output curve, and the olding the real ear SPL output curve. This will yield the correct gain
typedef struct { TRHMeasCond TFreqMeasPoint } TRECMeas;	MeasCond; RECDCrv[169];
<pre>// // TFittingRule : // enum TFittingRule { fr_POGO=1, fr_POGOII, fr_NAL, fr_NALProf, fr_Berger, fr_HalfGain, fr_ThirdGain, fr_DSL, fr_LIBBY, fr_Byrne, ft_CoxMSU, fr_User1=100, fr_User2, fr_User3, fr_User4, fr_User5, fr_User6, fr_User7, fr_User8, fr_User10, fr_User10, fr_Undefined=Un </pre>	The fitting rule used for the calculation of a target curve

};

```
//
// THIType :
                         The type of the hearing instrument being tested.
//
enum THIType {
   hit_ITE=1,
      hit_BTE,
      hit_ITC,
      hit MITC,
      hit Body,
      hit_User1,
      hit_User2,
      hit_User3,
      hit_User4,
      hit User5.
      hit_Undefined=UndefInt
};
typedef int Tmm10;
//
// TTargetPoint :
                        a single element/point of the target curve.
//
typedef struct {
   THertz TargetFreq;
   TdB10
            TargetGain;
} TTargetPoint;
//
// TTargetCurve : a full target curve including the description.
//
typedef struct {
   TManufCode
                         ManufCode;
   TDevTypeCode
                         DevTypeCode;
   TFittingRule
                         FittingRule;
   THIType
                         HIType;
   Tmm10
                         VentDiam; // The diameter of the vent canal
   Tmm10
                         VentLen;
                                    // The length of the vent canal
   TdB10
                                     // The reserve gain included in the target curve
                         ResGain:
   TCouplerType
                         CouplerType;
    //
    // Use this field to state the signal level if target curve relates to a specific signal level.
    //
   TdB10
                         SignalLevel;
   TTargetPoint
                         Target[24]; // The target curve
                         RuleName[51]; // Text containing the target curve's name/description
   char
```

```
} TTargetCurve;
```

```
typedef int TPct100;
//
// TTHDDistMeasPoint: A single measurement point for Harmonic Distortion Measurements.
//
typedef struct {
   THertz Freq;
                                   // Signal frequency
                                   // Signal level
   TdB10
           Input;
                                   // the output value at Freq
   TdB10 Output1Harm;
   TdB10
           Output2Harm;
                                   // the output value at 2*Freq
                                   // the output value at 3*Freq
   TdB10 Output3Harm;
                                   // the calculated THD based on OutputXHarm
   TPct100 THDPct;
} TTHDDistMeasPoint;
//
// TTHDDistMeas:
                        A complete curve containing a Harmonic Distortion measurement.
//
typedef struct {
   TRHMeasCond
                        MeasCond;
   TTHDDistMeasPoint DistCrv[161];
} TTHDDistMeas;
//
// TTIMDistMeasPoint:
                                   A single measurement point for InterModulation Distortion
                       Measurements.
//
//
typedef struct {
   THertz Freq1;
                       // First stim freq
   THertz Freq2;
                       // Second stim freq
   TdB10
           Input1;
                       // Level of first stim
  TdB10
           Input2;
                       // Level of second stim
   TdB10
           Output1;
                       // Output at Freq1
                       // Output at Freq2
   TdB10
           Output2;
   TdB10
            OutputDif1; // Output at Freq2-Freq1
   TdB10
           OutputDif2; // Output at 2*Freq1-Freq2
   TPct100 TIMPct;
                       // The calculated result
} TTIMDistMeasPoint;
//
// TTIMDistMeas: A complete curve containing an Intermodulation Distortion measurement.
//
```

typedef struct {
 TRHMeasCond MeasCond;
 TTIMDistMeasPoint DistCrv[161];
} TTIMDistMeas;

// // TIOMeasPoint: // // Note: //	A measurement point for Input/Output measurements. No frequency information in single points. This is common for all the measurement points and the value is stated in MeasCond.
typedef struct { TdB10 Input; TdB10 Output; } TIOMeasPoint;	
// // TIOMeas : //	A complete curve containing an Input/Output measurement.
typedef struct { TRHMeasCond TIOMeasPoint } TIOMeas;	MeasCond; IOCrv[61];
typedef unsigned	TmA100; // Current value in hundredths of a milliampère
// // TBatMeasPoint : //	A measurement point for Battery Current measurements.
typedef struct { THertz Freq; TmA100 Current; } TBatMeasPoint;	
// // TBatMeas : //	A complete curve containing a Battery Current measurement.
typedef struct { TRHMeasCond TBatMeasPoint } TBatMeas;	MeasCond; BatCrv[169];
typedef int TARTime;	// Attack/Release time in milliseconds
// // TARMeasPoint : a mea //	asurement point for Attack/Release measurements.
<pre>typedef struct { TdB10 Output; } TARMeasPoint;</pre>	

```
//
// TARCurve : a single curve for partial info of an Attack/Release measurement.
//
typedef struct {
   TARMeasPoint
                         Curve[256];
                                                 // The curve itself
    //
    // Time result (in milliseconds) (result depending on whether this is AttackCrv or ReleaseCrv)
    //
   int
            Result;
    //
    // The time resolution of the measurement (in milliseconds).
    //
   int
            Resolution;
    //
    // The number of milliseconds included in the curve before level change.
    //
   int
            Predelay;
} TARCurve;
//
// TARMeas :
                         A complete curve set containing a full Attack/Release test.
//
typedef struct {
   TRHMeasCond
                         MeasCond; // Generic measurement conditions.
   TdB10
                         LevelStep; // The level step size from the start level defined in MeasCond.
                         AttackCrv; // The curve where the stimulus level increases.
   TARCurve
                         ReleaseCrv: // The curve where the stimulus level decreases.
   TARCurve
} TARMeas;
//
//
//
typedef struct {
   TRHMeasCond
                         MeasCond:
   TFreqMeasPoint
                         EINCrv[169];
    //
    // Input part: uncompensated level from the test chamber
    // Output part: coupler output level compensated with the gain value
    //
   TdB10
                         EINRMS; // The calculated result.
} EINMeas;
```

//	
// RemData : //	Defines structure for storing a Real Ear Measurement
typedef struct	{
I TargetCu //	rve larget[3];
// Unaide	d Response: input is the input level, output is uncompensated probe level.
//	Must be valid for use as an output curve as well as a gain curve,
//	stimulus level value.
//	
TFreqMea	s REUR;
// Occluc // Actual	led Response: input is the input level, output is uncompensated probe level. ly like Aided Response(REAR) but the H.I. is off or detached during the measurement.
TFreqMea	s REOR;
// // I	nsertion Response:
//	Input is the input level, output is the probe level with or
//	without REUR compensation.
anv // N	Teasurement = meas_insertGain_U -> the output values are dB SPL values without
//	REUR compensation.
// N //	Measurement = meas_InsertGain_C -> the output values are dB SPL values less the REUR's gain, i.e. with REUR compensation.
//	Gain curves may be stored here. In this case the Input part must be set
//	zero and the gain value must be stored in the Output part.
TFreqMea	s REIR[5];
// Aided	Response: input is the input level, output is uncompensated probe level.
TFreqMea TIOMeasI	s REAR[5]; OMeas[5]:
TTHDDist //	Meas HarmDistortion[3];
// See the	e TOcclMeas description
TOcclMea	s Occlusion[3];
// See the	TRECMeas description
TRECMea	s RECoupler;

} RemData;

```
//
// HitData :
//
```

Defines structure for storing a Hearing Instrument Test

```
typedef struct {
  TFreqMeas
                      SPL90[2];
  TFreqMeas
                      FullOnGain[2];
  TFreqMeas
                      FreqResp[2];
  TBatMeas
                      Battery[2];
  TTHDDistMeas
                      HarmDistortion[2];
  TTIMDistMeas
                      InterDistortion[2];
                      EquivInputNoise[2];
  EINMeas
  TIOMeasIOMeas[2];
  TARMeas
                      AttackRecover[4];
  TFreqMeas
                      InductionCoil[2];
} HitData;
```

#endif

Index

A

Abstract Syntax Notation No. 1 (ASN.1), 8 Aided Response, 57 Aided Response(REAR), 9, 57 AttackCrv, 11, 56 AttackRecover, 10, 58

B

BatCrv, 12, 55 Battery, 10, 58 BattImp, 20, 51 BattPill, 20, 51 BattType, 20, 51 BattVoltage, 20, 51 bp_Bat13, 23. See TBattPill bp_Bat230, 23. See TBattPill bp_Bat312, 23. See TBattPill bp_Bat675, 23. See TBattPill bp_None, 23. See TBattPill bp_NU, 23. See TBattPill bp_User1, 23. See TBattPill bp_User2, 23. See TBattPill bp_User3, 23. See TBattPill bt_Mercury, 22. See TBattType bt_None, 22. See TBattType bt_NU, 22. See TBattType bt_OtherType, 22. See TBattType bt_User1, 22. See TBattType bt_User2, 22. See TBattType bt_User3, 22. See TBattType bt_ZincAir, 22. See TBattType

С

components, 8 Conditions, 6, 20, 25 CouplerType, 15, 53 ct_2cc, 22. *See* TCouplerType ct_711, 22. *See* TCouplerType ct_FreibKK, 22. *See* TCouplerType ct_None, 22. *See* TCouplerType ct_NU, 22. *See* TCouplerType ct_RealEar, 22. *See* TCouplerType ct_User1, 22. *See* TCouplerType ct_User2, 22. *See* TCouplerType ct_User3, 22. *See* TCouplerType Current, 12, 55 curve, 20, 25 Curve, 11, 56

D

data structure, 8 DevTypeCode, 15, 20, 51, 53 DistCrv, 13, 14, 54

Ε

EINCrv, 11, 56 EINMeas, 10, 11, 56, 58 EINRMS, 11, 56 endCurve, 18, 19, 25 EquivInputNoise, 10, 58

F

FittingRule, 15, 53 fr_Berger, 16. See TFittingRule fr_Byrne, 16. See TFittingRule fr_DSL, 16. See TFittingRule fr_HalfGain, 16. See TFittingRule fr_LIBBY, 16. See TFittingRule fr_NAL. See TFittingRule fr_NAL,, 16 fr_NALProf, 16. See TFittingRule fr_POGO, 16. See TFittingRule fr_POGOII, 16. See TFittingRule fr_ThirdGain, 16. See TFittingRule fr_Undefined, 16. See TFittingRule fr_User1, 16. See TFittingRule fr_User10, 16. See TFittingRule fr_User2. See TFittingRule fr_User2,, 16 fr_User3, 16. See TFittingRule fr_User4, 16. See TFittingRule fr_User5, 16. See TFittingRule fr_User6, 16. See TFittingRule fr_User7, 16. See TFittingRule

fr_User8, 16. *See* TFittingRule fr_User9, 16. *See* TFittingRule Freq, 12, 14, 18, 51, 54, 55 freq1, 18, 19 Freq1, 13, 54 Freq2, 13, 54 FreqCrv, 17, 51 FreqResp, 10, 58 ft_CoxMSU, 16. *See* TFittingRule FullOnGain, 10, 58

Η

HarmDistortion, 10, 58 hit_Body. See THIType hit_Body,, 16 hit_BTE, 16. See THIType hit_ITC, 16. See THIType hit_ITE, 16. See THIType hit_MITC. See THIType hit_MITC,, 16 hit_Undefined, 16. See THIType hit_User1, 16. See THIType hit_User2, 16. See THIType hit_User3, 16. See THIType hit_User4, 16. See THIType hit_User5, 16. See THIType HitData, 10, 58 HIType, 15, 53 HrmDistortion, 10, 57

I

InductionCoil, 10, 58 Input, 13, 14, 18, 51, 54, 55 Input1, 13, 54 Input2, 13, 54 Insertion Response, 9, 57 InterDistortion, 10, 58 IOCrv, 12, 55 IOMeas, 10, 57, 58

L

LevelStep, 11, 56

Μ

ManufCode, 15, 20, 51, 53 maxInt, 9 meas_AidedResp, 24. See Tmeasurement meas_AttackRec, 24. See Tmeasurement meas_AudHand, 24. See Tmeasurement meas_BattCurr, 24. See Tmeasurement meas_EquivNoise, 24. See Tmeasurement meas_FOG, 24. See Tmeasurement meas_FreqResp, 24. See Tmeasurement meas_HarmDist, 24. See Tmeasurement meas_IndCoil, 24. See Tmeasurement meas InputOutput, 24. See Tmeasurement meas_InsertGain_C, 24. See Tmeasurement meas_InsertGain_U, 24. See Tmeasurement meas_InterDist, 24. See Tmeasurement meas_NU, 24. See Tmeasurement meas_OcclEff, 24. See Tmeasurement meas_OcclResp, 24. See Tmeasurement meas_RECD, 24. See Tmeasurement meas_SPL90, 24. See Tmeasurement meas_TargHand, 24. See Tmeasurement meas_UnAided, 24. See Tmeasurement

meas_User1, 24. See Tmeasurement meas_User2, 24. See Tmeasurement meas_User3, 24. See Tmeasurement measCond, 6, 25, 28, 29 MeasCond, 11, 12, 13, 14, 17, 51, 52, 54, 55, 56 MeasMode, 20, 51 Measurement, 20, 51 Measuring Conditions, 25 minInt, 9 mm_Battery, 23. See TMeasMode mm_FFT, 23. See TMeasMode mm NU. 23. See TMeasMode mm_Sweep, 23. See TMeasMode mm_TimeMeas, 23. See TMeasMode mm_User1, 23. See TMeasMode mm_User2, 23. See TMeasMode mm_User3, 23. See TMeasMode

0

OcclEarCrv, 17, 51 Occlusion, 10, 57 OpenEarCrv, 17, 51 Output, 12, 13, 18, 51, 55 Output1, 13, 54 Output1Harm, 14, 54 Output2, 13, 54 Output2Harm, 14, 54 Output3Harm, 14, 54 OutputDif1, 13, 54 OutputDif2, 13, 54

P

Predelay, 56

R

REAR, 57 RECDCrv, 17, 52 RECoupler, 10, 57 REIR, 10, 40, 57 curve, 40 ReleaseCrv, 11, 56 RemData, 9, 57 REOR, 57 ResGain, 15, 53 Resolution, 56 Result, 56 REUR, 38, 40, 57 RuleName, 15, 53

S

SignalFreq, 51 SignalLevel, 15, 20, 51, 53 SignalOutput, 20, 51 SignalType, 20, 51 so_AC, 21. See TSignalOutput so ExternalBox, 21. See TSignalOutput so_ExternalBoxCoil,, 21. See TSignalOutput so_FF, 21. See TSignalOutput so_FFCoil, 21. See TSignalOutput so_InternalBox, 21. See TSignalOutput so_InternalBoxCoil, 21. See TSignalOutput so_NU, 21. See TSignalOutput so_User1,, 21. See TSignalOutput so_User2, 21. See TSignalOutput so_User3, 21. See TSignalOutput SPL90, 10, 58

VentDiam, 15, 53

VentLen, 15, 53

st_NarrNoise, 21. See TSignalType st_NU, 21. See TSignalType st_Patient, 21. See TSignalType st_PinkNoise, 21. See TSignalType st_SpeechNoise, 21. See TSignalType st_Tone, 21. See TSignalType st_TwoTone, 21. See TSignalType st_User1, 21. See TSignalType st_User2, 21. See TSignalType st_User3, 21. See TSignalType st_Warble, 21. See TSignalType st_WhiteNoise, 21. See TSignalType

Т

TARCurve, 11, 56 Target, 10, 15, 53, 57 TargetFreq, 15, 53 TargetGain, 15, 53 TARMeas, 10, 56, 58 TARMeasPoint, 11, 12, 55, 56 TARTime, 55 TBatMeas, 10, 12, 55, 58 TBatMeasPoint, 12, 55 TBattImp, 20, 22, 49, 51 TBattPill, 20, 23, 49, 51 TBattType, 20, 22, 49, 51 TBattVoltage, 20, 22, 49, 51 TCouplerType, 15, 22, 49, 53 TdB10, 9, 11, 12, 13, 14, 15, 18, 20, 51, 53, 54, 55, 56 TDevTypeCode, 15, 20, 51, 53 TFittingRule, 15, 16, 52, 53 TFreqMeas, 10, 17, 51, 57, 58 TFreqMeasPoint, 11, 17, 18, 51, 52, 56 THDPct, 14, 54 THertz, 9, 12, 13, 14, 15, 18, 20, 51, 53, 54, 55 THIType, 15, 53 TIMPct, 13, 54 TIOMeas, 10, 12, 55, 57, 58 TIOMeasPoint, 12, 55 TmA100, 12, 55 TManufCode, 15, 20, 51, 53 TMeasCond, 25 TMeasMode, 20, 23, 50, 51 Tmeasurement, 20, 24, 50, 51 Tmm10, 15, 53 TOcclMeas, 10, 17, 51, 57 TOhm1000, 22, 49 TPct100, 9, 13, 14, 54 TRECMeas, 10, 17, 52, 57 TRHMeasCond, 11, 12, 13, 14, 17, 20, 51, 52, 54, 55, 56 TSignalOutput, 20, 21, 48, 51 TSignalType, 20, 21, 48, 51 TTargetCurve, 10, 15, 45, 53, 57 TTargetPoint, 15, 53 TTHDDistMeas, 10, 14, 54, 57, 58 TTHDDistMeasPoint, 14, 54 TTIMDistMeas, 10, 13, 54, 58 TTIMDistMeasPoint, 13, 54 TTime100, 9 TV1000, 22, 49 type definition, 6

U

undefInt, 9, 19, 25 UndefInt, 16, 52 unknown. *See* Integer UseRECoupler, 20, 51